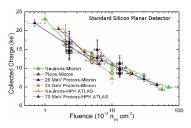

T-992: Rad Hard Sensors for the SLHC


Luigi Vigani INFN Milano for the T-992 Collaboration

October 21, 2013

SLHC: Luminosity upgraded to 10^{35} cm $^{-2}$ s $^{-1}$

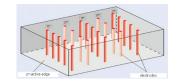
- → Integrated luminosity up to 2500 fb⁻¹ after 5 years
- \rightarrow at 5 cm from the interaction point radiation fluence of $10^{16} n_{eq}/cm^2$
 - \hookrightarrow High radiation damage
 - \hookrightarrow Less charge collection

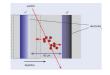
Excellent radiation hardness required

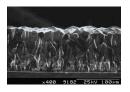
The aim is to study and compare unirradiated and irradiated detectors to check their performance.

Two types tested:

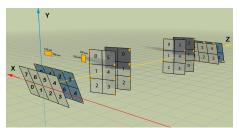
- ▶ 3D Silicon sensors
- Diamond sensors


T-992 is a test beam experiment at the Fermilab Test Beam Facility conceived to perform this analysis.


- → 120 GeV proton beam
- » 8 planes pixel telescope to reconstruct particles tracks
- Several detectors, both irradiated (up to $10^{15}n_{eq}$) and not, available for testing

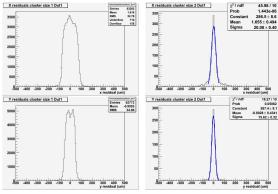

Several institution collaborated:

Fermilab	S. Kwan, A. Prosser, L. Uplegger, R. Rivera,
	J. Chramowicz, C. Lei
Purdue	G. Bolla, D. Bortoletto, M. Jones
	M. Bubna, A. Krzywda, K. Arndt
Colorado	S. Wagner, J. Cumalat, M. Krohn
Texas A&M	I. Osipenkov
INFN Milano	L. Moroni, D. Menasce, M. Dinardo
	L. Vigani
INFN Torino	M. Obertino, A. Solano
Buffalo	A. Kumar, A. Godshalk
IHPC Strasbourg	J. M. Brom
Mississippi	L. Perera


- 3D Electrodes inserted in the silicon bulk: charge collected laterally along a shorter path
 - √ Lower depletion voltage
 - √ Faster charge collection
 - √ Less carriers trapping
 - X Higher capacitance \rightarrow higher noise
- **Diamond** Planar sensor with an instrinsic high radiation hardness: high bandgap
 - √ Faster charge collection
 - √ No leakage current
 - X Less charge carriers produced \rightarrow lower signal
 - X Trapping due to imperfections in crystalline structure

8 planes of pixel detectors, 4 upstream and 4 downstream, with the DUTs in the middle.

- $ightarrow 100 imes 150 \ \mu m^2$ pixels
- → Track reconstruction and plane alignment algorithm
- \hookrightarrow Effective resolution \simeq 6 μm

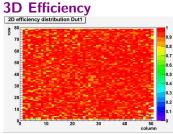

The telescope and its data software: after each run it was possible to verify the quality of the data

Analysis

Many detectors have been analyzed to obtain a large variety of results:

- ★ Various scans to run in different conditions
 - √ Bias scan
 - √ Threshold scan
 - √ Angle scan
- ★ Various types of analysis pursued:
 - √ Resolution
 - √ Efficiency
 - √ Charge collection
- * Data were taken in the last two weeks of September
- * In the next slides are shown some preliminary results already available for an unirradiated and irradiated $(1 \cdot 10^{15} \text{ neq/cm}^2)$ 3D, and an irradiated $(3.5 \cdot 10^{14} \text{ protons/cm}^2)$ Diamond pixel.

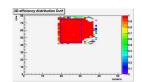
3D Residuals


X residuals for size 1 and 2 clusters

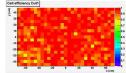
Y residuals for size 1 and 2 clusters

Size 2 clusters are still computed as for planar detectors: a new method must be pursued to improve their resolution!

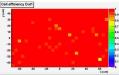
Diamond Residuals


Efficiency spatial distribution on detector: mean

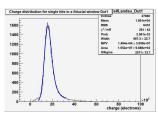
Cell efficiency Dut1


efficiency = 94.3% (unirradiated)

Distribution on cell: note the electrodes!


Diamond Efficiency

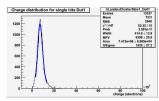
Efficiency spatial distribution on detector: mean efficiency = 94% (irradiated)



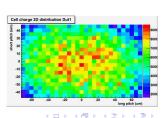
Distribution on cell: bad values due to bad working pixels, the readout chip was damaged by irradiation.

Distribution on cell if we focus on the center of the detector (blue rectangle mean efficiency = 99.4%

3D Charge Distributions

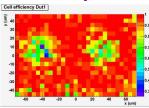


Charge overall distribution (Landau): $MPV = 149 \cdot 10^{3} e^{-}$


Cell charge 2D distribution Dut1 14000 40 60 long pitch (um)

Average charge spatial distribution on cell

Diamond Charge Distributions



Charge overall distribution (Landau): $M.P.V. = 6.4 \cdot 10^3 e^- \text{ (irradiated!)}$

Average charge spatial distribution on cell



Efficiency on cell: average efficiency = 93.2%

→ Slightly lower than the unirradiated, as expected!

Alignment not perfect → Must be improved!

Charge collection

Overall charge distribution (Landau):

$$M.P.V. = 13.3 \cdot 10^3 e^-$$

→ Slightly lower than the unirradiated, as expected!

Still working well after a dose of $1 \cdot 10^{15}$ neg/cm²

- $\sqrt{}$ Several detectors successfully tested
- √ Preliminary results in agreement with predictions so far:
 - \hookrightarrow Comparison between not irradiated and irradiated sensors
 - → Resolution and Charge collection parameters

Work in progress

- ▶ Improve the analysis to understand behaviour at the boundaries between the pixels and at the edges of the detectors
- ▶ Improve the size 2 clusters reconstruction

See for example size 2 residuals when the point is "digitalized" (set at the boundary of the pixel) and the charge is set to be below 20 ke⁻ (to cut δ rays off)

 \triangleright Analyze the data at angles $> 0^{\circ}$

Future Goals

Study detectors irradiated at higher doses